CAR-T Clinical Trials: New Directions in Biomarkers

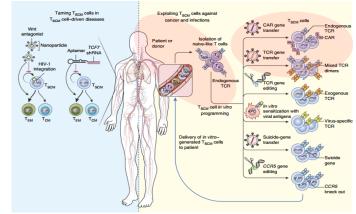
Matthew A. Spear, MD Chief Medical Officer

What is the Future of CAR-T?

- Initial CAR-T outcomes have been revolutionary (e.g., high 3-5yr disease-free survival rates)
 - But, the field is nascent and there is extraordinary remaining potential
 - And, products are complex- in addition to the differences in constructs and methods, each product is a living drug liable to intra-product variability in patient (e.g., source T-cells, host environment and tumor) & manufacturing
- Advances in genetic engineering and manufacturing techniques provide markedly greater potential for rationale improvement than in classical drug development
- What is being done to advance the field?
 - Novel binding domains and multi-CARs
 - Vectors- viral and non-viral (transposons)
 - Safety switches
 - Selection
 - Editing (KOs)
 - Biomarkers- inform all above
 - For CAR-T cells
 - For patients (host and apheresis)
 - For disease
 - For in vivo activity

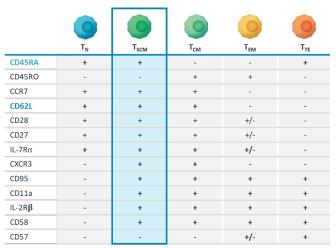
Biomarkers

- Predictive biomarkers are well established in oncology, particularly when a drug specifically targets an oncogenic driver
- CAR-T cells are a nascent and far more complex field
- Although CAR-T cells target tumor selective antigens, correlations between antigen levels and efficacy have been poor
- Each patient may not only have a unique tumor genotype / phenotype, but a unique drug (T cell) genotype / phenotype and host immunologic milieu
- Thus, benefit in assessing each tumor, CAR-T and host


T stem-cell memory / central memory (Tscm/Tcm)

T_{SCM} May Be Key to Safe, Potent and Durable Responses

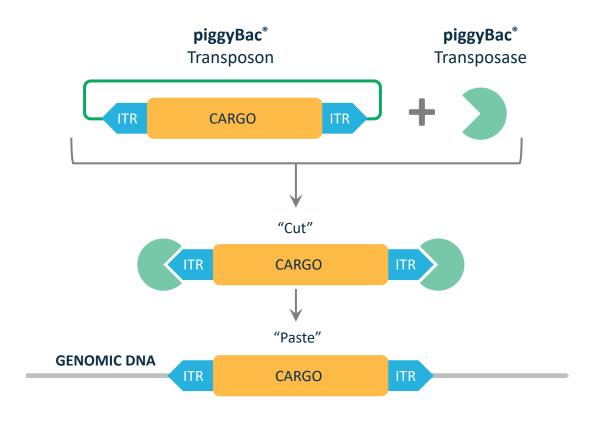
 "The extreme longevity, the robust proliferative potential and the capacity to reconstitute a wide-ranging diversity of the T cell compartment make the T_{SCM} cell type an ideal cell population to employ in adoptive immunotherapy"


Correlates with CAR-T clinical response

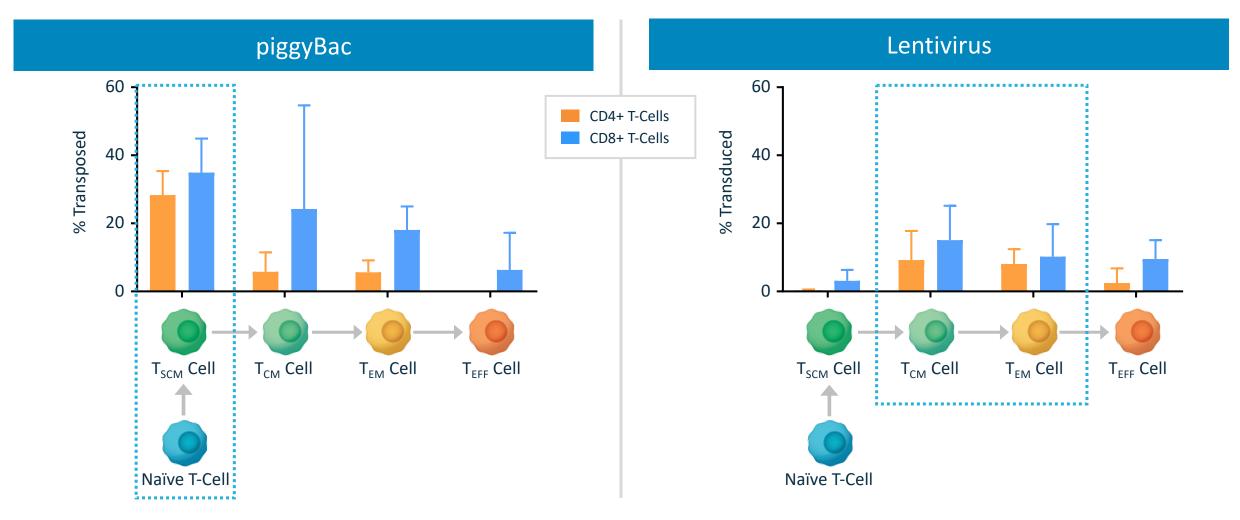
- Melenhorst J. et al., UPenn (2017) 20th ASGCT
- Basu et al., Adaptimmune (2017) CAR-TCR Summit
- T_{CM}: Larson, Juno (2018) AACR
- Bot A., et al., Kite (2018) SITC
- T_{SCM} TIL: Beatty M., Moffitt (2018) SITC
- T_{CM}: Fraietta J. et al., UPenn (2018) TET2 Disruption, PMID: 29849141

T memory stem cells in health and disease

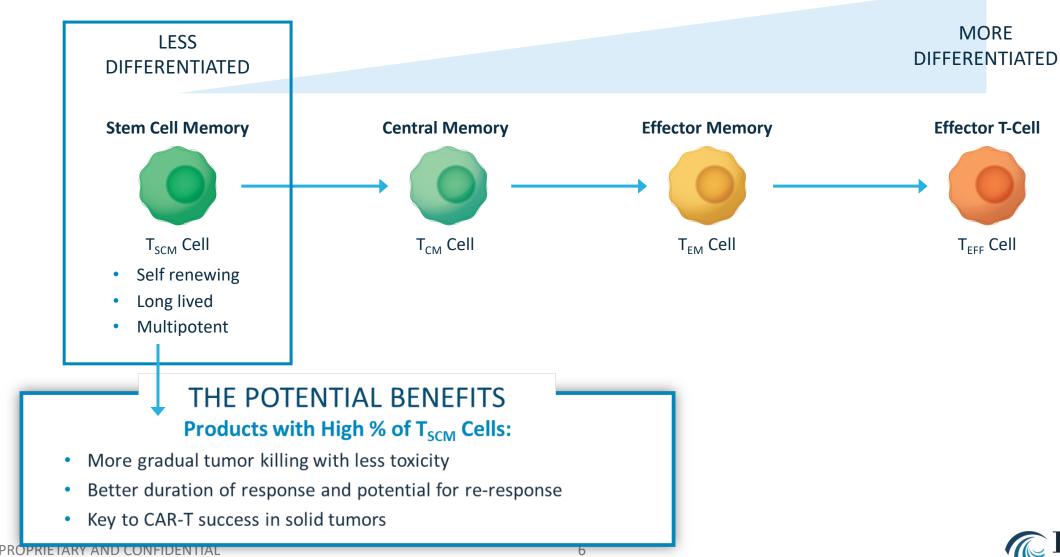
Luca Gattinoni¹, Daniel E Speiser², Mathias Lichterfeld³ & Chiara Bonini^{4,5}



PiggyBac® DNA Transposon System

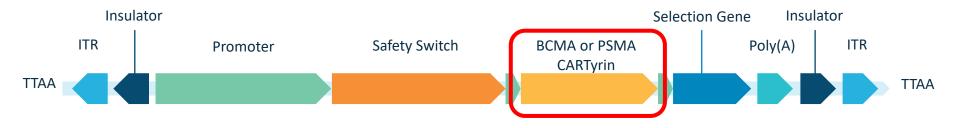

piggyBac[®] is a Superior DNA Delivery System for Developing CAR-T and Other Gene Therapy products

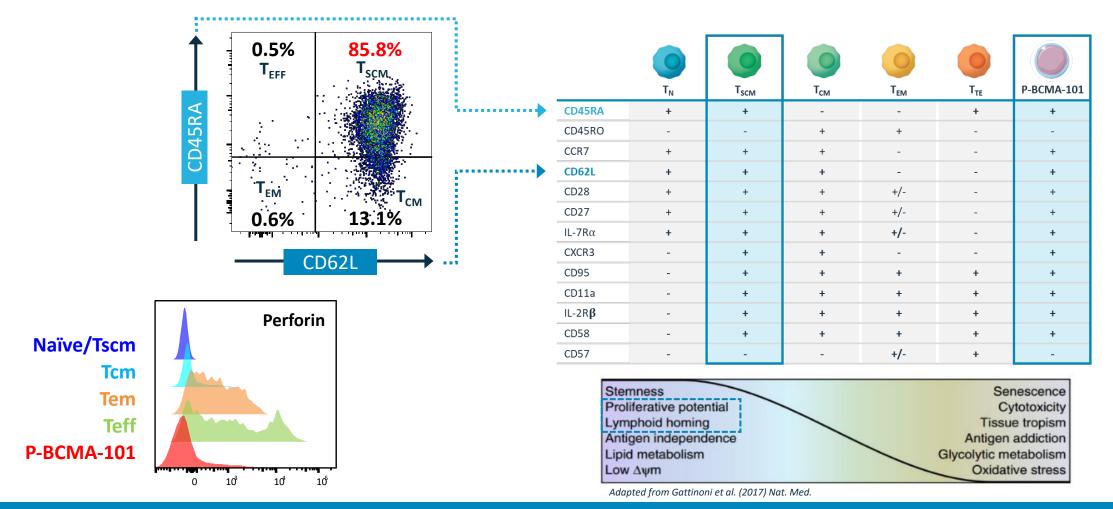
- Unprecedented cargo capacity (>30X lentivirus) three-inone transgene and possibility of multiple CAR or TCR molecules
- Non-viral delivery system non-oncogenic and nonmutagenic
- High insertion efficiency and stable transgene expression
- Faster to clinic with lower cost than viral methods
- Substantial IP portfolio with no dominant or competing IP
- Creates products with highly desirable T Stem Cell Memory (Tscm) Phenotype


piggyBac[®] Preferentially Transposed *Early* T_{SCM} Cells; Lentivirus Transduced *More Differentiated* T-Cells In Preclinical Studies

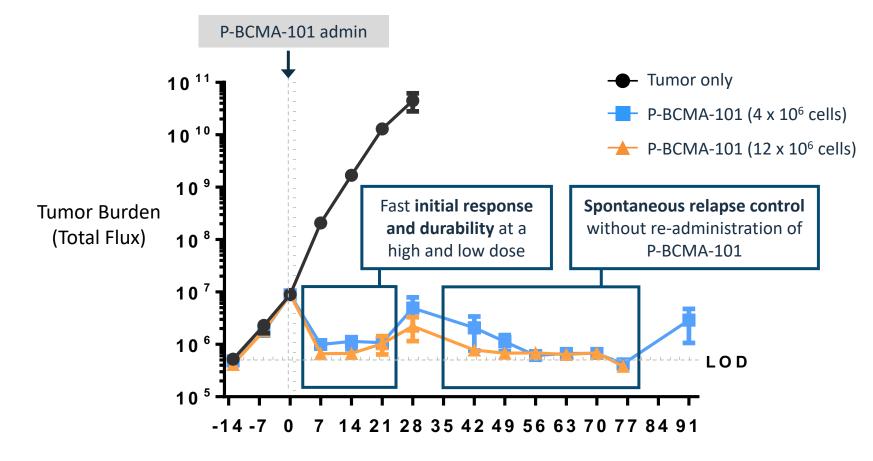
We purified donor cells to these T-cell subsets and then performed optimized piggyBac or optimized lentivirus manufacturing on each subset

Percentage transposed (% GFP+) data are displayed for CD4+ T cells (CD3+CD4+CD8-) or CD8+ T cells (CD3+CD8+CD8+) or CD8+ T cells (CD3+CD8+CD8+CD8+) or CD8+ T cells (CD3+CD8+CD8+) or CD8+


Not All T-Cells are Equal: The Importance of Stem Cell Memory Cells


P-BCMA-101/P-PSMA-101: Three-In-One Transgene CAR-T products

1 CAR-T MOLECULE	 Superior binding molecule Centyrin binder with high-specificity binding to target Fully human and not susceptible to tonic signaling
2 POSITIVE SELECTION	 Drug resistance gene permits positive selection ~100% of T-cells in final product express the CAR molecule Predicted to result in better therapeutic index
3 SAFETY SWITCH	 Incorporates proprietary safety switch Rapid, dose-dependent elimination of engineered T-cells if needed Management of Cytokine Release Syndrome (CRS) or other AEs


Stem Cell Memory T_{SCM} Phenotype in Poseida's Product Candidates

Our product more closely matches a T_{scm} phenotype when we do extensive cell surface markers and even intracellular markers

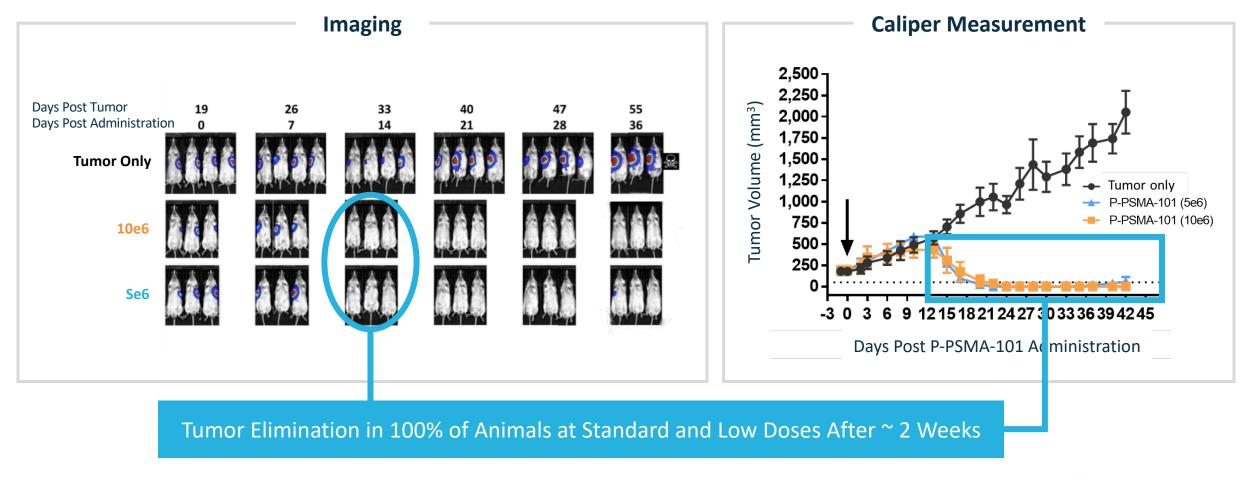
P-BCMA-101 Eliminated Tumors in Aggressive MM Cancer Model

Days Post P-BCMA-101 Administration

High % of T_{SCM} Cells: Unlocking Potential of CAR-T to Successfully Treat Solid Tumor Indications

Conventional Experience and Perception

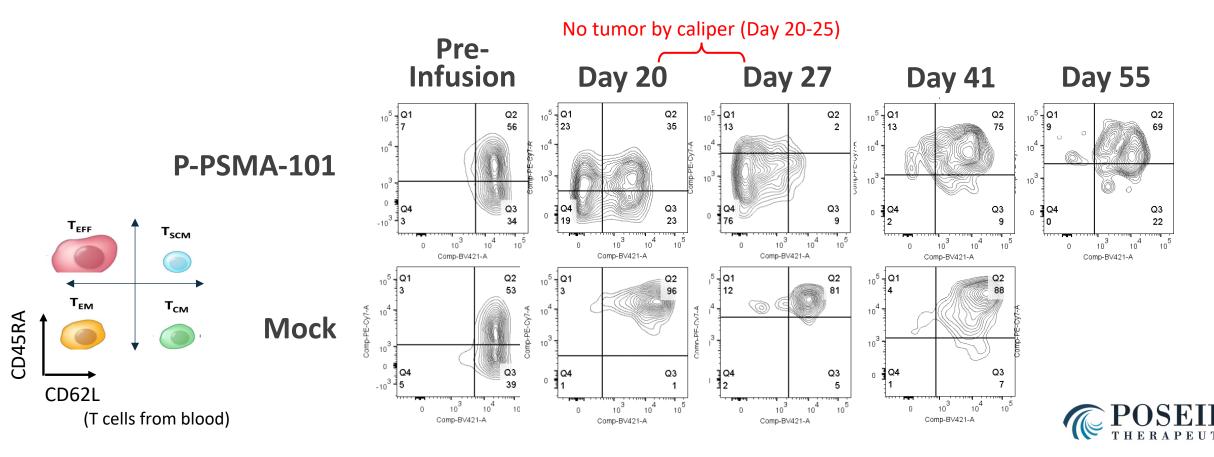
- Poor CAR-T responses in solid tumors to date
- Rare instances with complete response (GBM, HCC) have occurred only after multiple administrations
- CAR-T can cause complete responses in solid tumors, but numerous waves of more differentiated cells are required


Our Approach

Our product candidates are comprised of a high percentage of T_{SCM} cells, which we believe hold the potential to engraft, self renew and create wave after wave of more differentiated effector cells with one administration

P-PSMA-101 Observed Potent In Vivo Activity

EFFICACY OF P-PSMA-101 IN PROSTATE CANCER MODEL (LNCaP.luc)



Data presented at SITC 2017. One animal in the low dose cohort relapsed later in the study.

A Population of P-PSMA-101 T_{SCM} Persists

P-PSMA-101: Solid tumor (LNCaP) SC implantation in NSG mice

- P-PSMA-101 (T_{SCM}/T_{CM}) give rise to CARTyrin+ T_{CM} , T_{EM} , and Teff to attack solid tumor
- After solid tumor elimination, a population of P-PSMA-101 T_{SCM} persists

Phase 1/2 Relapsed/Refractory Multiple Myeloma Clinical Trial (PRIME)

Phase 1 Trial Design

- Open Label, 3+3 Design, Single Ascending Dose Study
- 30 mg/m2 fludarabine + 300 mg/m2 cyclophosphamide x 3d lymphodepletion regimen
- P-BCMA-101 administered intravenously
 - Allowance for multiple doses and retreatment after other CAR-Ts
 - **Outpatient** administration allowed
- Up to 80 subjects

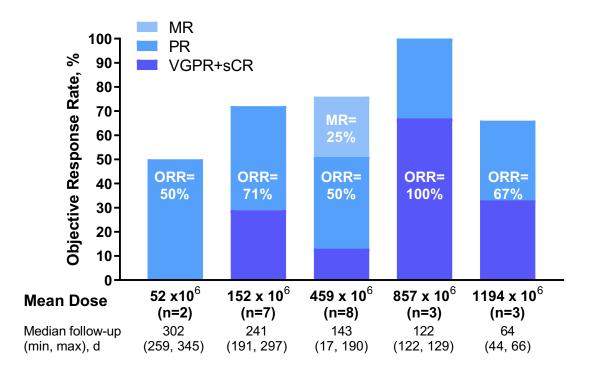
Phase 2 Trial Design

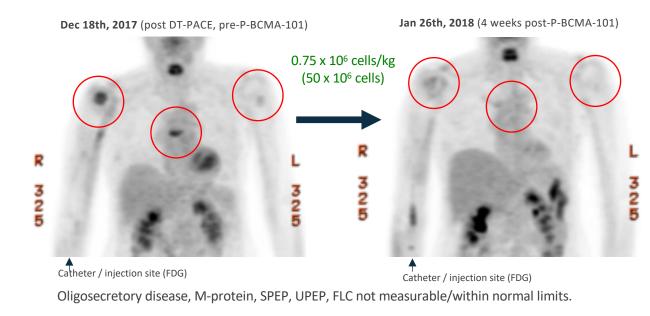
- Same schema as Phase 1
- P-BCMA-101 administered intravenously at 6-15 x 10⁶ cells/kg
- 100 subjects

Clinical Trial Sites

Colorado Blood Cancer Institute- Tara Gregory, M.D. Hackensack University Medical Center- David Siegel, M.D. Johns Hopkins- Syed Abbas Ali, M.D. Karmanos Cancer Institute- Abhinav Deol, M.D. MD Anderson Cancer Center- Krina Patel, M.D. Swedish Cancer Institute- William Bensinger, M.D. Tennessee Oncology- Jesus G. Berdeja, M.D. UC San Diego Moores Cancer Center- Caitlin Costello, M.D. UC San Francisco- Nina Shah, M.D. University of Chicago- Andrzej Jakubowiak, M.D.

University of Kansas Cancer Center- Siddhartha Ganguly, M.D. University of Maryland- Aaron Rapoport, M.D. University of Pennsylvania- Adam Cohen, M.D.

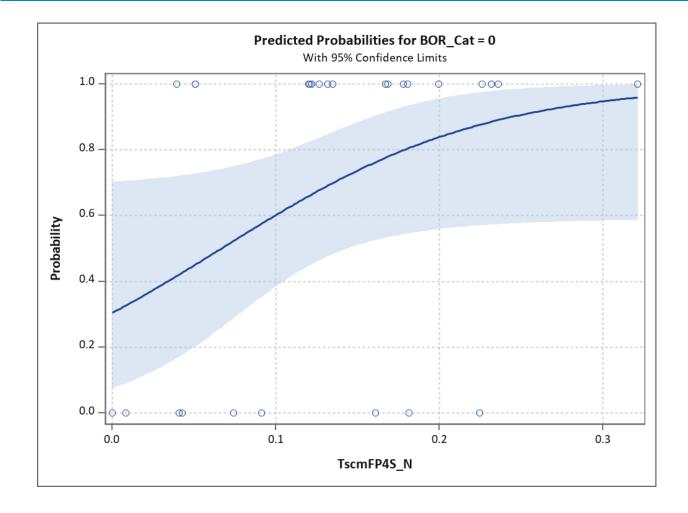

<u>CIRM</u>



High Response Rates

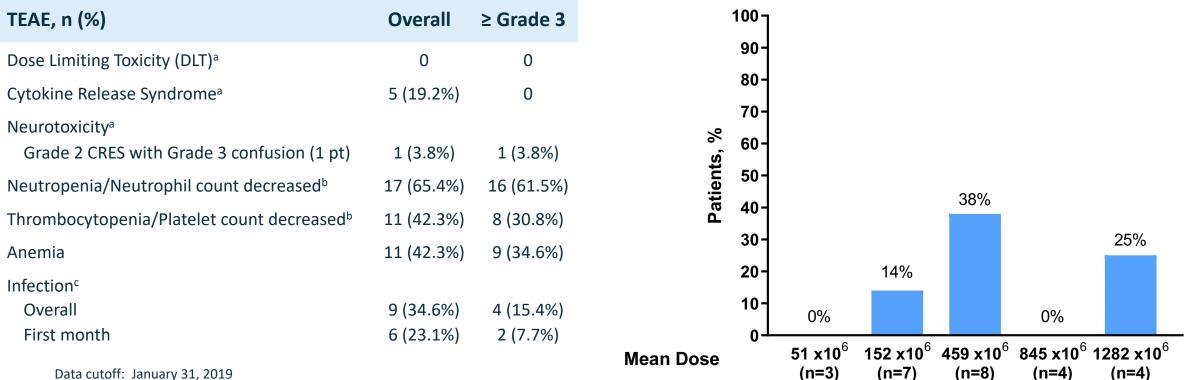
Tumor Response in Evaluable Patients by Dose

Patient 105-002 PET



Data cutoff: January 31st, 2019. ORR, objective response rate, attaining sCR (inc. MRD-), CR, VGPR or PR, including confirmed and unconfirmed responses. Evaluable patients: evaluable first response assessment by IMWG m-protein criteria or PD/death.

%Tscm Correlates with Response in Patients Treated with P-BCMA-101


Analysis of Maximum Likelihood Estimates						
Parameter	D F	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq P-value	
Intercept	1	-0.8267	0.8603	0.9233	0.3366	
TscmFP4S	1	12.3798	6.5225	3.6025	0.0577	

Adverse Events of Interest

Treatment-Emergent Adverse Events (n=26)

Cytokine Release Syndrome By Dose Level

Data cutoff: January 31, 2019

^aby investigator assessment

CRES based on confusion reported in a patient with baseline mental status decrement, tabulated in CRS & Neurotoxicity

not including orthostatic dizziness or peripheral neuropathy/tremor

^bsubject counted once for either term

cincludes events in the SOC Infections and Infestations. Subject counted once

for any PT within the SOC.

Cytokine Release Syndrome Minimal, IL-6 Low but Correlates

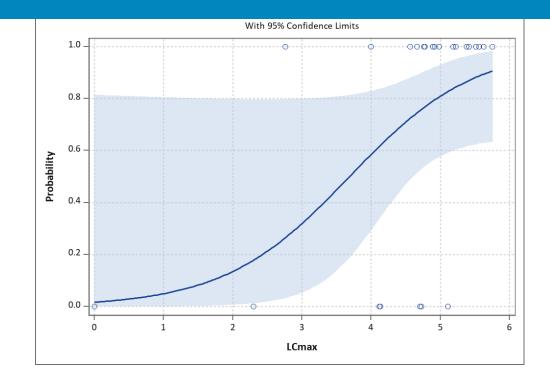
Cytokine Release Syn	drome Parameters	Peak IL-6 L	evels After P-BCMA-101
Parameter	Dosed Patients (n=26)	50,000-	Levels generally reported
Patients with a CRS event, n	5 (19.2%)	10,000	for patients with severe CRS ¹
Maximum CRS grade None 1 2	21 (80.8%) 3 (11.5%) 2 (7.7%)	1,000 E bd 100	 Grade 2 CRS assessed Grade 1 CRS assessed No CRS assessed
Median time to onset, d Median duration, d	8 4		1 Moudo et al. 2014

¹*Maude et al., 2014 Ali et al., 2016*

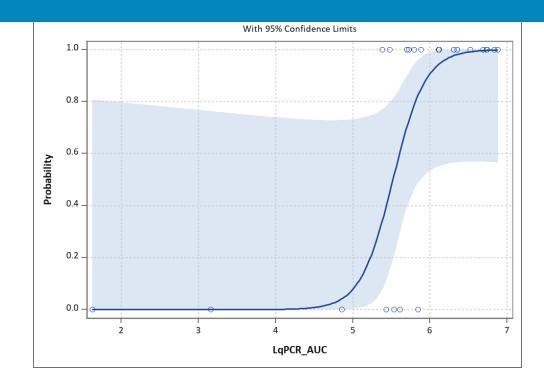
IL-6

P-BCMA-101 CAR-T Cells in PB: Gradual Expansion

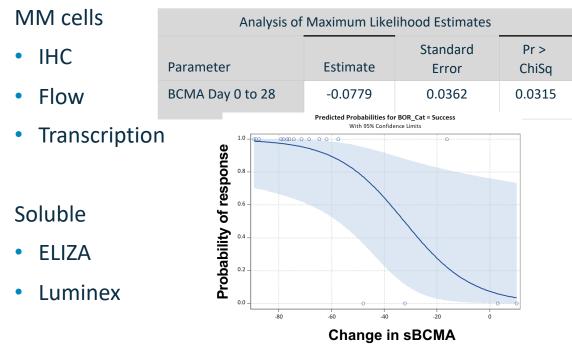
P-BCMA-101 in Peripheral Blood using PCR

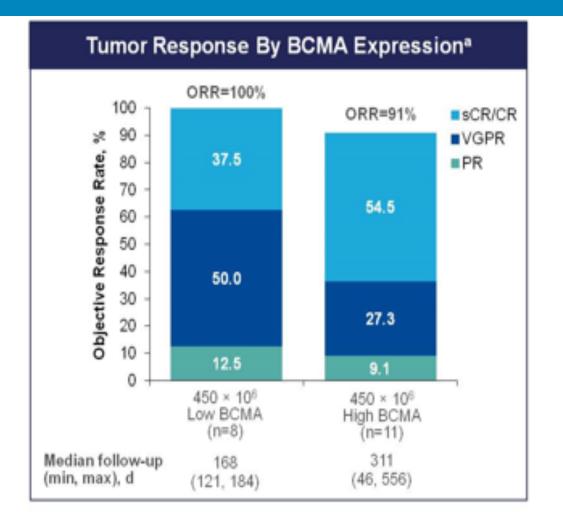


- 105-001
 105-002
- 105-003
- 102-001
- 102-002
- 104-003
 102-004
- 106-001
- 105-006
- **—** 104-005
- 104-006
- --· 106-002
- --- 106-003 --- 106-004
- --- 100-004
- --- 104-008
- --- 103-003
- --- 102-006
- --- 104-004
- --- 106-005
- --- 101-003
- --- 102-007
- --- 105-007
- ·• 106-006
- 105-008


- Many CAR-T products show peak expansion between 5-14 days
 - Peak expansion of CAR-Ts often associated with CRS
- P-BCMA-101 shows peak expansion between 14-21 days
 - P-BCMA-101 reaches peak expansion gradually without CRS

Correlations with Cmax/AUC and Outcome


Analysis of Maximum Likelihood Estimates					
Parameter	D F	Estimate	Standard Error	Wald Chi- Square	Pr > ChiSq
Intercept	1	-4.0596	2.8251	2.0649	0.1507
LCmax	1	1.1008	0.6063	3.2967	0.0694


Analysis of Maximum Likelihood Estimates						
Parameter	D F	Estimate	Standard Error	Wald Chi- Square	Pr > ChiSq	
Intercept	1	-26.2121	14.2531	3.3821	0.0659	
LqPCR_AUC	1	4.7476	2.5183	3.5541	0.0594	

New Disease Markers in MM/CAR-T: BCMA Correlations?

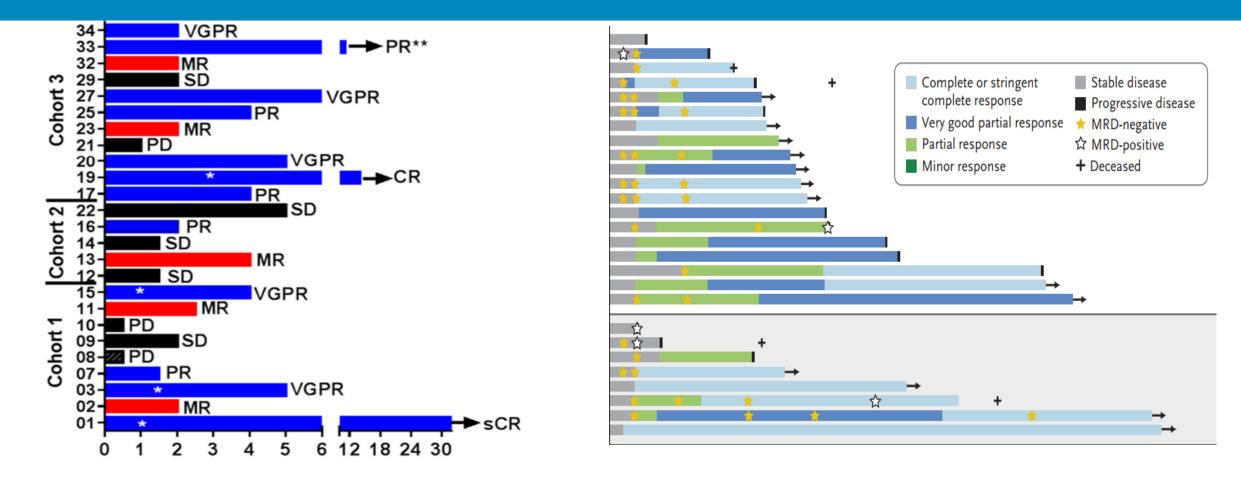
- Statistically significant correlation between decrease in sBCMA in the first 4 weeks and response.
- sBCMA tracks with FLC kinetics

bb2121: Raje et al. ASCO 2018

New Disease Markers in MM: MRD

- Assessment for residual MM cells in bone marrow
- Increase sensitivity over standard measures of disease burden after treatment (m-protein, FLC, BMPC)
 - Studies indicate complete response of these markers correlate with survival outcomes
 - Most patients relapse in spite of a complete response in these markers
- Methods (bone marrow sample)
 - multiparametric flow cytometry for myeloma-associated markers (MFC) (1:10e5)
 - allele-specific oligonucleotide for IGH rearrangements (ASO)-qPCR (1:10e5)
 - next-generation sequencing of VDJ sequences for rearrangements (NGS) (1:10e6)
 - CTD?

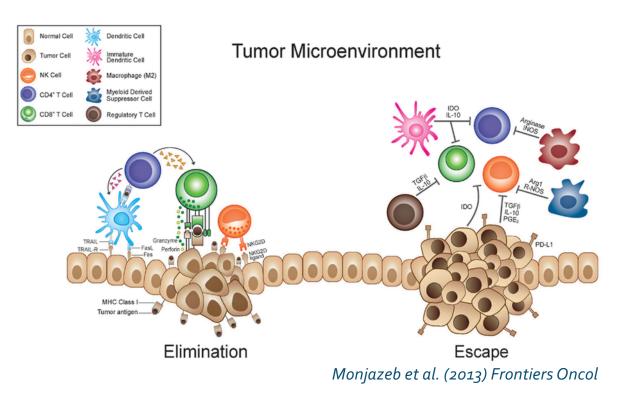
W


O

		Disease status and treatment	N (total)*	MRD-negative patients	Outcomes
Correlations	Puig et al ³³	GEM2000† and GEM05‡ trials	103 (170)	47%	MRD-negative patients had significantly longer PFS, both in the intensively treated patient group (median 54 months vs 27 months; $p=0.001$) and in the non-intensively treated group (median not reached vs 31 months; $p=0.029$)
	Korthals et al ^{6±}	Induction: 2–4 cycles of idarubicin and dexamethasone followed by ASCT	53 (70)	49%	Median EFS in the low-MRD group was significantly longer than in the high-MRD group (35 months vs 20 months; p=0-001). Overall survival was significantly longer for the low-MRD group (70 months vs 45 months; p=0-04)
vith long-term	Putkonen et al∞	Patients with multiple myeloma who had achieved a complete response/near to complete response after ASCT or SCT	30 (37)	57%	Low/negative-MRD after ASCT or SCT was a significant predictive factor for the prolongation of PFS (median 70 vs 19 months; p =0-003)
Nuteomoci	Martinez-Sanchez et al ³⁸	Patients enrolled in the GEM2000* protocol	53 (88)	53%	PFS not reached in MRD-negative patients vs 31 months for MRD-positive patients (p=0.001)
Jutcomes: Ladetto et	Ladetto et al ⁶³	Four cycles of bortezomib, thalidomide, and dexamethasone consolidation after ASCT	39 (112)	18%	Improved PFS; 100% vs 77% at 6 months (grouped by median tumour load as detected by allele-specific oligonucleotide qPCR [p=0-02])
	Sarasquete et al ³⁹	Patients with multiple myeloma who had achieved a complete response after transplantation	24 (32)	29%	Improved PFS for MRD-negative patients (median 34 months vs 15 months; p=0-04)
	Martinelli et al ⁶⁴	Patients who achieved a complete response following ASCT or SCT	44 (50)	27%	MRD-negative patients had a significantly lower relapse rate (41% vs 16%; p<0·05) and longer relapse-free survival than MRD-positive patients (median 35 months vs 110 months; p<0·005)

Kumar, 2016

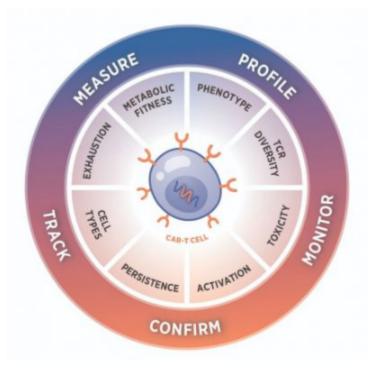
New Disease Markers in MM/CAR-T: MRD Correlations?


CART-BCMA: Cohen et al. J Clin Invest 2019

bb2121: Raje et al. NEJM 2019

Immunosuppressive Pathways

- Immunosuppressive tumor microenvironment likely decreases efficacy especially in solid tumors
 - PD-L1, TGF β , IL6, IL10, etc...
 - Tregs, MDSC, TAM, etc...
 - poor CAR-T durability



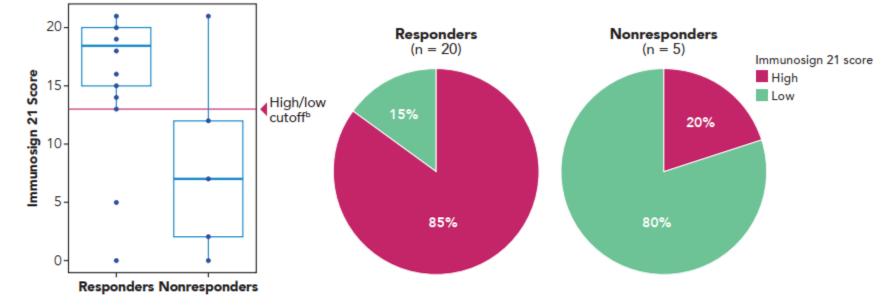
Gene Expression Analysis using Nanostring in CAR-T Cells

Nanostring CAR-T Panel Measures Eight Essential Components of CAR-T Biology

- Optimize CAR-T method development
- Create manufacturing acceptance criteria
- Measure metabolic fitness and persistence
- Monitor post-infusion exhaustion and toxicity

Advanced Analysis Modules available for CAR-T Characterization:

- TCR Diversity Score (coming soon)
- Normalization
- Quality Control
- Pathway Analysis
- Cell Profiling
- Differential Expression
- Gene Set Analysis
- Built-in compatibility for Panel-Plus and Protein analysis



From: www.nanostring.com

Gene Expression Analysis using Nanostring in DLBCL

High ImmunoSigne21 was Associated with Objective Response

lmmunosign 21				
CD3G	STAT4			
CD3E	CD3D			
GZMK	GZMM			
PRF1	CD8A			
ICOS	CXCL10			
STAT1	IL15			
CCR2	CCL2			
IRF1	TBX21			
GZMA	CXCR3			
GZMB	CD69			
CXCL11				

"This analysis was performed on samples from 25 patients treated with axi-cel with a minimum follow-up of 9 months. One patient subsequently converted from a "nonresponder" to a "responder" at 12-month follow-up.

*Cutoff was arbitrarily defined as the 25th percentile of the observed scores among samples.

- A high Immunosign 21 score was associated with objective response at a minimum follow-up of 9 months (P = .012; Figure 5)
- In a sensitivity analysis, which included the delayed responder, the association between a high Immunosign 21 score and objective response had a P - .053

Rossi et al, AACR 2018

Summary

New Methods are Continually Being Introduced to Evolve CAR-T cells

- The field is nascent with extraordinary results, and advances in genetic engineering and manufacturing techniques allow for extraordinary potential in rationale design to improve CAR-T cells
- P-BCMA-101 incorporates a number of these advances and has been assessed in a clinical trial where it induced high response rates and deep responses in a heavily pretreated r/r MM population, with an excellent safety profile
- In Poseida's clinical trial of P-BCMA-101, %Tscm was strongly correlated with efficacy; proliferative capacity (Cmax and AUM) also correlated with efficacy and durability and <u>strongly support the Tscm hypothesis</u>

There are significant opportunities in novel biomarker methods to help guide the evolution of the field

