September 4-7 2018, Boston, MA

P-MUC1C-101: A Stem Cell Memory CAR-T Therapy for Epithelial-Derived Solid Tumors

Devon J. Shedlock, PhD

VP, Preclinical Development September 5th, 2018

piggyBac[™] Enables Multiple Differentiated CAR-T Product Attributes

piggyBac[™] is a superior DNA delivery system for developing CAR-T and other gene therapy products

- Unprecedented cargo capacity (>30X lentivirus) three-inone transgene and possibility of multiple CAR or TCR molecules
- Creates highly desirable T Stem Cell Memory (Tscm)
 Phenotype
- Non-viral delivery system non-oncogenic and nonmutagenic
- High insertion efficiency and stable transgene expression
- Faster to clinic with lower cost than viral methods
- Substantial IP portfolio with no dominant or competing IP

piggyBac™ Unmatched Cargo Capacity Increases Optionality

piggyBac[™] effectively delivers multiple full-length CARs in single transposon system

* Plus selection gene and marker gene

Massive piggyBac[™] Cargo Capacity Allows for Delivery of Three-In-One Transgene for CAR-T products

1	CAR-T MOLECULE	 Superior binding molecule Molecule (Centyrin, VH, scFv, etc) with high-specificity binding Fully human and not susceptible to tonic signaling
2	POSITIVE SELECTION	 Drug resistance gene permits positive selection ~100% of T-cells in final product express the CAR molecule Predicted to result in better therapeutic index
3	SAFETY SWITCH	 Incorporates proprietary safety switch Rapid, dose-dependent elimination of engineered T-cells if needed Management of Cytokine Release Syndrome (CRS) or other AEs

Poseida CAR-T Products Comprised of Highly Favorable Stem Cell Memory T Cells

Tscm phenotype should increase duration of response and allow for relapse control without re-administration

- Ability to develop product with **high percentage of Tscm** cells is a distinct competitive advantage
- piggyBac[™] preferentially transposes in Tscm cells
 - Tscm cells persist and live longer than effector cells
 - **Tscm cells** can produce potentially unlimited effectors cells
- Tscm-rich product should lead to better engraftment and better duration of response with the potential for reresponse
- Lentivirus-produced products have not achieved high Tscm published percentages ranging from less than 1% to ~14%

T_{scm} May Be Key to Potent and Durable Responses

Poseida CAR-T Products Comprised of Highly Favorable Stem Cell Memory T Cells

Correlates with clinical response

- Melenhorst J. et al., UPenn (2017) 20th ASGCT
- Basu et al., Adaptimmune (2017) CAR-TCR Summit
- T_{CM}: Larson, Juno (2018) AACR
- Without prior fractionation of T_N/T_{CM} , Akt inhibitors and shortened process are mostly successful in increasing T_{CM} during viral manufacture
- "The extreme longevity, the robust proliferative potential and the capacity to reconstitute a wideranging diversity of the T cell compartment make the T_{scm} cell type an ideal cell population to employ in adoptive immunotherapy"

T memory stem cells in health and disease

Luca Gattinoni¹, Daniel E Speiser², Mathias Lichterfeld³ & Chiara Bonini^{4,5}

VOLUME 23 | NUMBER 1 | JANUARY 2017 NATURE MEDICINE

Gattinoni et al. (2009) Nat Med; Hinrichs et al. (2009) PNAS; Hinrichs et al (2011) Blood; Gattinoni et al. (2011) Nat Med; Lugli et al. (2013) JCI; Klebanoff et al (2016) JCI; Sukumar et al (2016) Cell Met; Sabatino et al. (2016) Blood;

Poseida CAR-T Comprised of Highly Favorable Tscm

Teff Tscm Tem Tcm CD62L CD62L CD62L CD62L

			Ļ					Ļ	
					T _{EM}	TTE	P-BCMA-	101	
→	CD45RA	+	+	-	-	+	+		
	CD45RC	- (-	+	+	-			
	CCR7	+	+	+	-	-	+		
→	CD62L	+	+	+	-	-	+		
	CD28	+	+	+	+/-	-	+		
	CD27	+	+	+	+/	-	+		
	IL-7Rα	+	+	+	+/-	-	+		
	CXCR3	-	+	+	-	<u></u>	+		
	CD95	-	+	+	+	+	+		
	CD11a	-	+	+	+	+	+		
	IL-2Rβ	-	+	+	+	+	+		
	CD58	-	+	+	+	+	+		
	CD57	-	the second s	-	+/	+	-		
		Stemness Proliferative Lymphoid ho Antigen inde Lipid metabo Low Δψm	potential ming pendence lism		T Anti Glycolyti Ox	Senescence Cytotoxicity issue tropism gen addiction c metabolism idative stress			

Adapted from Gattinoni et al. (2017) Nat. Med.

piggyBac[™] and Lentivirus Modify Different T Cell Subsets

piggyBac[™] preferentially transposes early Tscm cells, while lentivirus prefers differentiated T cells

We purified donor cells to these T-cell subsets and then performed optimized piggyBac[™] or optimized lentivirus manufacturing on each subset

THERAPE

Poseida CAR-T_{scm} **Unprecedented Preclinical Efficacy**

P-BCMA-101: Liquid tumor (MM.1S) disseminated IV implantation in NSG mice P-PSMA-101: Solid tumor (LNCaP) SC implantation in NSG mice

Days Post CAR-T Administration

Days post CAR-TAdm in istration

Poseida P-BCMA-101: Phase I Study Ongoing

• Design

- Single dose, 3+3 dose escalation + selected expansion
- Adult subjects with relapsed or refractory MM

• Key Objectives

- Safety, maximum tolerated dose and/or optimal dose
- Anti-myeloma efficacy
- Expansion and functional **persistence** of the CARTyrin-T cells

Row	Saved	Status	Stud	y Title	Conditions	Interventions	Locations
1		Recruiting	P-BCMA-101 Tscm CAR-T Cells in Multiple Myeloma (MM)	the Treatment of Patients With	 Multiple Myeloma 	Biological: P-BCMA-101 CAR-T cells	Colorado Blood Cancer Institute Denver, Colorado, United States
							 Johns Hopkins University Baltimore, Maryland, United States
	NIH) Clin	U.S. Nat nical	ional Library of Medicine Trials.gov				 University of Pennsylvania Philadelphia, Pennsylvania, United States
			0	9			 (and 2 more)

P-MUC1C-101

Autologous CAR-T Therapy for Multiple Solid Tumors

MUC1 Target Has Broad Pan-Tumor Potential

Mucin-1 (MUC1) is highly expressed in most epithelial-derived cancers

- MUC1 normally expressed on apical surface of epithelium
- Aberrant form of MUC1 is expressed on cancer cells, which is specifically recognized by our binder
- Target for multiple immunotherapies
 (e.g. cancer vaccines, antibody therapies)

Tumor Type	MUC1 Expression	Number of Tissues	Reference
Breast	91%	1,447	Rakha et al (2005)
NSCLC	99%	231	Merck Serono. Data on file
RCCa	84%	133	Langner et al (2004)
Colorectal	81%	243	Baldus et al (2002)
Ovarian	83%	63	Chauhan et al (2006)
H&N SCCa	82%	29	Croce et al (2001)
Nasopharyngeal	100%	38	Zhong et al (1993)
Gastric	77%	136	Utsunomiya et al (1998)
Prostate	79%	89	DeNardo et al (2005)
Pancreatic	81%	53	Qu et al (2004)
Mesothelioma	75%	20	Saad et al (2005)
Multiple myeloma	59%	125	Cloosen et al (2006)
Esophageal	32%	53	Kijima et al (2001)

MUC1 is a Highly Complex Protein

- Single pass Type I transmembrane protein
 - N-terminal subunit (MUC1-N) and C-terminal subunit (MUC1-C) form stable heterodimeric complex
- Canonical isoform 1 is a 1,255aa protein
 - 42 20aa repeats
- MUC1 is highly polymorphic; various alleles change number of tandem repeats in N'
 - >90 isoforms; many with 20-200 VNTR repeats

MUC1 is a Highly Complex Protein

- MUC1 confined to apical surface of normal epithelial cells
 - <u>Hyperglycosylated on normal cells</u>
- Polarity is lost in tumor cells
 - <u>Hypog</u>lycosylated on tumor cells; branches seem highly immunogenic

MUC1 is a Highly Complex Protein

MUC1 can be cleaved by proteases

- MUC1 remains heterodimeric under normal growth conditions
- ECD is cleaved (ADAM 17/TACE and MMP-MT1) to generate shorter membrane-associated peptide fragments (MUC1-C)
 - MUC1* and MUC1-CTF $_{\rm 15}$
- Cleaved MUC1-N is shed from cell and triggers inflammation
 - Soluble MUC1-N is target for MUC1-N-specific immunotherapies and may limit their efficacy

MUC1 Comprises Various Epitopes for CAR Targeting

Signal peptide Hypoglycosylated branches on tumor cells are highly immunogenic Variable number **Tn CARs** N-terminal tandem repeat domain region Tn-specific binders recognize cancer-(MUC1-N) (VNTR) associated Tn glycoforms occurring in VNTR (Posey et al, 2016) SEA Extracellular cellular **MUC1-C CARs** domain domain (ECD) (GSVVV) MUC1-C specific binders Transmembrane **C-terminal** domain domain (TMD) Target epitopes in region proximal (MUC-1C) to cell membrane Cytoplasmic tail (CT) May be retained post-cleavage O-glycosylation Are difficult to produce and Kev: Lipid bilayer N-glycosylation currently more rare Peptide core Adapted from Nath et al 2014 15

Many MUC1 Isoforms, But Not All Comprise Tn Epitopes

Screening CARs Recognizing MUC1

Several CAR candidates exhibited antitumor activity against a MUC1⁺ cancer cell line

We constructed multiple MUC1-C CARs and tested:

- mRNA CAR Expression in primary human pan T cells
 - Confirmed surface expression of all
- Evaluated antitumor activity against a MUC1+ cancer cell line
- A few CARs (A,G, and E) expressed
 MUC1-specific antitumor activity

Screening CARs Recognizing MUC1

G MUC1 CAR exhibited strong antitumor activity against multiple MUC1+ cancer cell lines

We assessed mRNA CAR activity against MUC1 (full-length Isoform 10):

We compared mRNA MUC1 (MUC1-C vs TN) CAR activity against several breast cell lines:

MUC1 is Expressed on Numerous Cancers with High Unmet Need

Poseida MUC1-C CAR mediates robust anti-tumor activity against multiple tumor lines

MUC1 is Expressed on Numerous Cancers with High Unmet Need

Poseida MUC1-C CAR mediates robust anti-tumor activity against multiple tumor lines including ovarian

We assessed P-MUC1C-101 activity against ovarian tumor line (OVCAR3):

- Strong cytotoxicity
- CAR-Ts also proliferated and secreted IFNg
- Studies evaluating additional ovarian lines underway

Poseida piggyBac[™] manufacture of P-MUC1C-101

piggyBac[™] manufacturing process yields high levels of CAR-T_{scm}

CD62L

Evaluation of P-MUC1C-101 *in vitro*

Robust *in vitro* Tumor Killing by MUC1-C CAR-T_{scm}

Evaluation of P-MUC1C-101 *in vivo*

MUC1 CAR-T_{scm} were evaluated in MCF-7 breast cancer orthotopic tumor model

Potent in vivo Efficacy of P-MUC1C-101

Tumor elimination in 100% of animals at standard dose in human breast cancer xenograft model

Days post T cell in jection

Summary: Developing MUC1 CAR-T to Address Multiple Indications

Discovery program with compelling preclinical data and multiple development options

- P-MUC1C-101 demonstrated robust antitumor activity against multiple tumor types
- P-MUC1C-101 T_{scm} mediated rapid, sustained tumor regression and completely eliminated established tumors in an MCF-7 based orthotopic mouse model
- Compelling data suggesting molecule is binding tumor-specific MUC1
- Preclinical data portends broad product potential

Acknowledgments

Eric Ostertag, M.D., Ph.D, CEO Mark J. Gergen, J.D., CBO & CFO Matthew Spear, M.D., CMO

Devon J Shedlock, Ph.D., VP of Preclinical Development

Immuno-Oncology Jenessa Smith, Ph.D. Xinxin Wang, Ph.D.* Burton Barnett, Ph.D. Stacey Cranert, Ph.D. Christopher Martin, Ph.D. Elvira Khialeeva, Ph.D. Srinivas Rengarajan, M.S. Yenning Tan, M.S. Rebecca Codde

