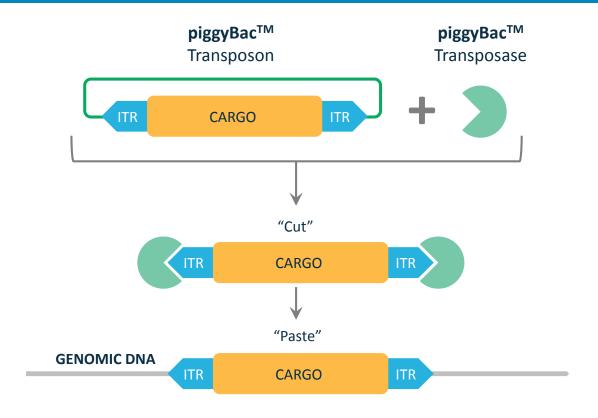
September 4-7 2018, Boston, MA

Update of The P-BCMA-101-001 Phase 1 Clinical Trial: A Novel Stem Cell Memory CAR-T for Relapsed/Refractory Multiple Myeloma

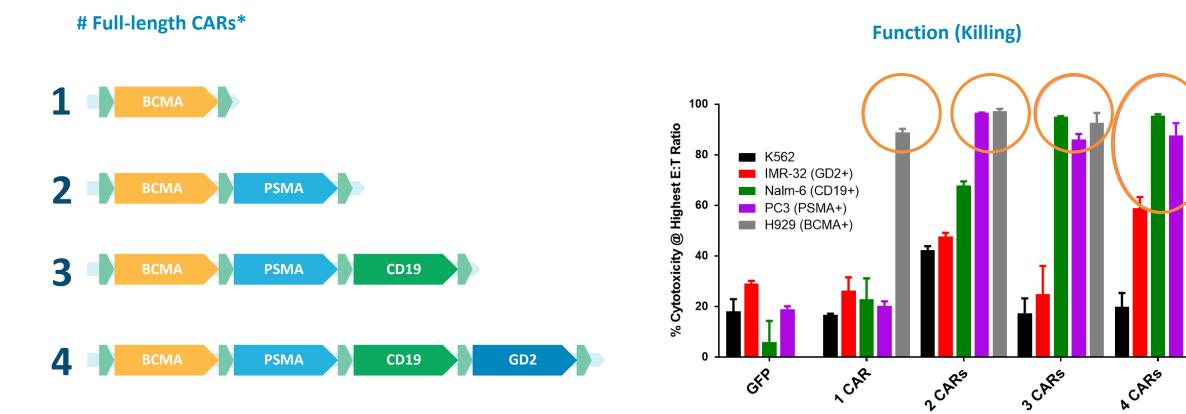

> *Eric Ostertag, MD, PhD Chief Executive Officer September 5th, 2018*

piggyBac[™] Enables Multiple Differentiated CAR-T Product Attributes

piggyBac[™] is a superior DNA delivery system for developing CAR-T and other gene therapy products

- Unprecedented cargo capacity (>30X lentivirus) three-inone transgene and possibility of multiple CAR or TCR molecules
- Creates highly desirable T Stem Cell Memory (Tscm)
 Phenotype
- Non-viral delivery system non-oncogenic and nonmutagenic
- High insertion efficiency and stable transgene expression
- Faster to clinic with lower cost than viral methods
- Substantial IP portfolio with no dominant or competing IP

Massive piggyBac[™] Cargo Capacity Allows for Delivery of Three-In-One Transgene for P-BCMA-101


1 CAR-T MOLECULE	 Superior binding molecule Centyrin molecule with high-specificity binding to BCMA Fully human and not susceptible to tonic signaling
2 POSITIVE SELECTION	 Drug resistance gene permits positive selection All T-cells in final product express the CAR molecule Predicted to result in better therapeutic index
3 SAFETY SWITCH	 Incorporates proprietary safety switch Rapid, dose-dependent elimination of engineered T-cells if needed Management of Cytokine Release Syndrome (CRS) or other AEs

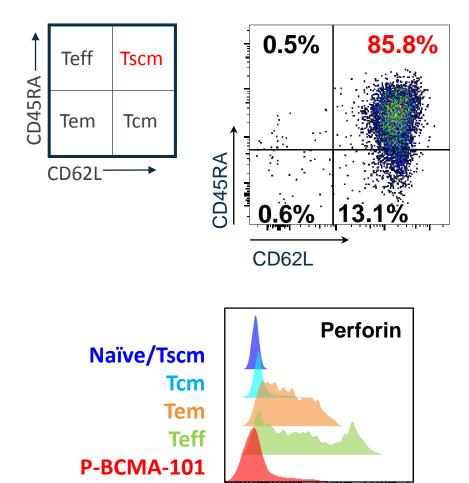
piggyBac[™] Unmatched Cargo Capacity Increases Optionality

piggyBac[™] effectively delivers multiple full-length CARs in single transposon system

* Plus selection gene and marker gene

Poseida CAR-T Products Comprised of Highly Favorable Stem Cell Memory T Cells

Tscm phenotype should increase duration of response and allow for relapse control without re-administration


- Ability to develop product with high percentage of Tscm cells is a distinct competitive advantage
- piggyBac[™] preferentially transposes in Tscm cells
- Tscm cells persist and live longer than effector cells
- Tscm cells can produce potentially unlimited effectors cells
- Tscm-rich product should lead to better engraftment and better duration of response with the potential for re-response

Lentivirus-produced products have not achieved high Tscm *published* percentages ranging from less than 1% to ~14%

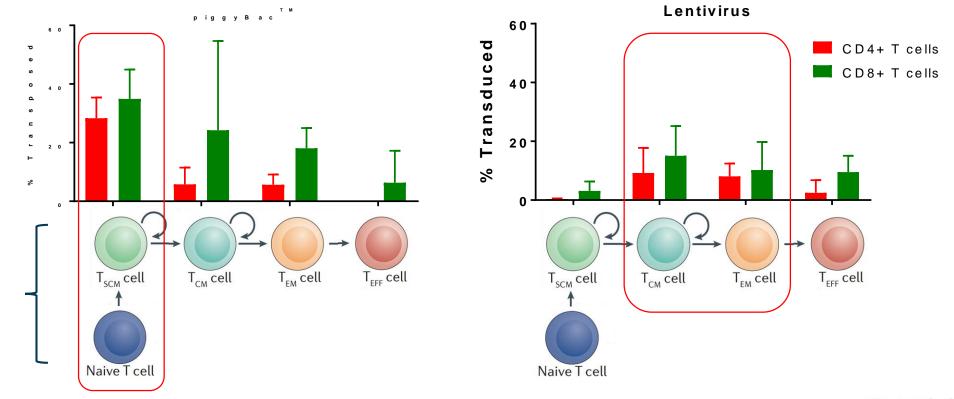
Stem Cell Memory Phenotype

1đ

1đ

1ð

0

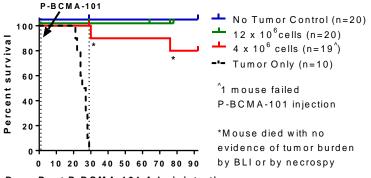

	(T _{EM}	TTE	P-BCMA-	101
		<u> </u>				<u> </u>		
\rightarrow	CD45RA	+	+	-	-	+	+	
	CD45RO	-	-	+	+	-	-	
	CCR7	+	+	+	-	-	+	
	CD62L	+	+	+	-	-	+	
	CD28	+	+	+	+/	-	+	
	CD27	+	+	+	+/-	-	+	
	IL-7Rα	+	+	+	+/-	-	+	
	CXCR3	-	+	+	-	-	+	
	CD95	-	+	+	+	+	+	
	CD11a	-	+	+	+	+	+	
	IL-2Rβ	-	+	+	+	+	+	
	CD58		+	+	+	+	+	
	CD57	-	-	-	+/	+	-	
	Pi Ly Ar Li	temness roliferative poten ymphoid homing ntigen independe pid metabolism ow Δψm			Anti Glycolyt	Senescence Cytotoxicity issue tropism gen addiction ic metabolism cidative stress		

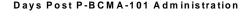
Adapted from Gattinoni et al. (2017) Nat. Med.

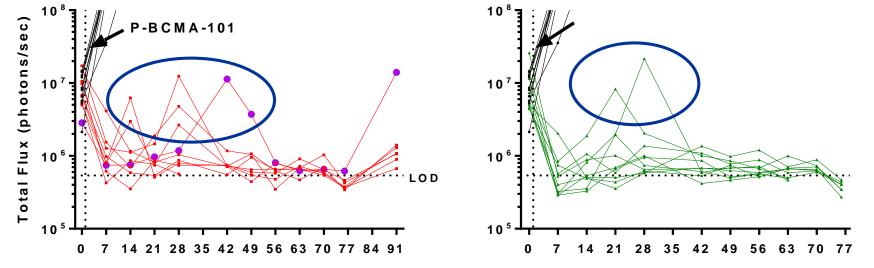
piggyBac[™] and Lentivirus Modify Different T Cell Subsets

piggyBac[™] preferentially transposes early Tscm cells, while lentivirus prefers differentiated T cells

We purified donor cells to these T-cell subsets and then performed optimized piggyBac[™] or optimized lentivirus manufacturing on each subset


THERAPE




P-BCMA-101 Efficacy & Control of Tumor Recurrences

Unprecedented efficacy in preclinical MM.1S xenograft model

- Some tumor relapse, but subsequent elimination of tumor
 - First observed in MDACC pilot study
 - Many examples of same phenomenon
 - Possibly due to stem-like (T_{SCM}) quality of product

Days Post P-BCMA-101 Administration

Phase 1 Relapsed/Refractory Multiple Myeloma Clinical Trial

P-BCMA-101-001 Phase 1 Trial Design

- Open Label, 3+3 Design, Single Ascending Dose Study
- Up to 6 dose levels
- 30 mg/m2 fludarabine + 300 mg/m2 cyclophosphamide x 3d lymphodepletion regimen
- P-BCMA-101 administered intravenously as a single dose
- Up to 40 subjects

Clinical Sites / Investigators

- Johns Hopkins Syed Abbas Ali
- MD Anderson Krina Patel & Bob Orlowski
- Sarah Cannon (SCRI) Tara Gregory & Jesus Berdeja
- U. of California at San Diego (UCSD) Caitlin Costello
- University of Pennsylvania Adam Cohen

P-BCMA-101-001 Enrollment

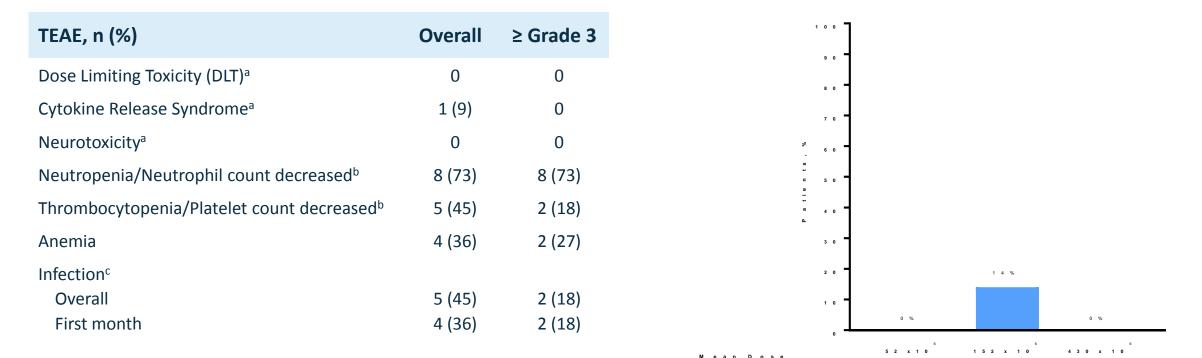
11 patients treated in 3 dose groups

Dose levels assessed 1 2 3	<u>cells/kg</u> 0.75 x 10 ⁶ 2 x 10 ⁶ 6 x 10 ⁶	
Potential additional dose levels 4 5	<u>cells/kg</u> 10 x 10 ⁶ 15 x 10 ⁶	
Total CAR-T cell administered per group (mean)	<u>cells</u> 51 x 10 ⁶ 152 x 10 ⁶ 430 x 10 ⁶	<u>Patients (#)</u> 3 7 1

Baseline Demographics and Clinical Characteristics

Parameter	
Median (min, max) age, y	60 (48, 72)
Male, n (%)	7 (64)
Median (min, max) time since diagnosis, y	5 (2, 12)
High-risk, n (%)	73
ECOG PS	
0	7 (64)
1	4 (36)
Median (min, max) prior regimens	6 (3, 9)
proteasome inhibitor, n (%)	11 (100)
bortezomib	11 (100)
carfilzomib	10 (91)
IMiD, n (%)	11 (100)
lenalidomide	11 (100)
pomalidomide	10 (91)
daratumumab, n (%)	11 (100)
Prior autologous SCT	9 (82)

Data cutoff: August 10th, 2018. Evaluable patients: reached first response assessment or PD/death


Adverse Events

Treatment-Emergent Adverse Events (N=11)

Cytokine Release Syndrome By Dose Level

(n = 3)

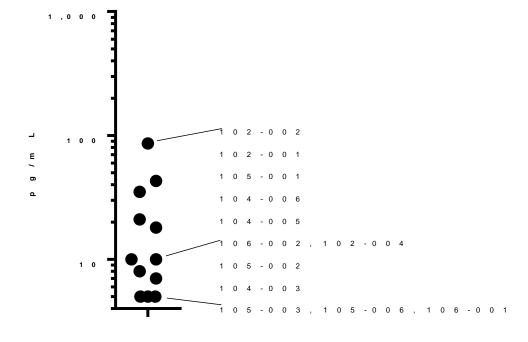
(n = 7)

^aby investigator assessment

^bsubject counted once for either term

^cincludes events in the SOC Infections and Infestations. Subject counted once for any PT within the SOC. Events reported include upper respiratory tract infection (3 subjects), pneumonia, sinusitis, wound infection, candida infection. Not including orthostatic dizziness or peripheral neuropathy/tremor

POSEIDA THERAPEUTICS

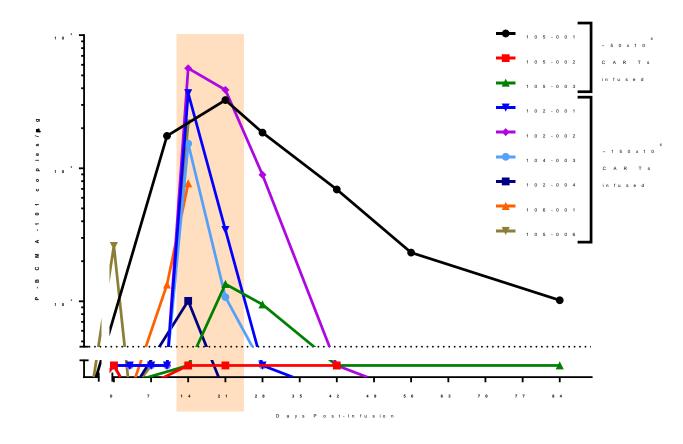

(n = 1)

Cytokine Release Syndrome: Negligible No Tocilizumab or Steroid Required, Low IL-6 Peaks

Cytokine Release Syndrome Parameters

Peak IL-6 Levels After P-BCMA-101

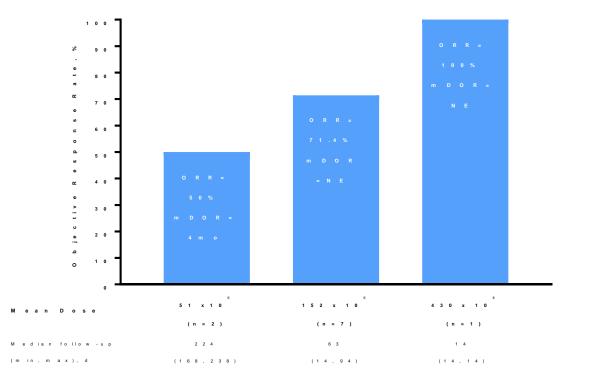
Parameter	Dosed Patients (n=11)
Patients with a CRS event, n	1 (9%)
Maximun CRS grade None 1 2	10 (91%) 0 1 (9%)
Median time to onset, d Median duration, d	11 4
Tocilizumab use, n Corticosteroid use, n	0 (0%) 0 (0%)

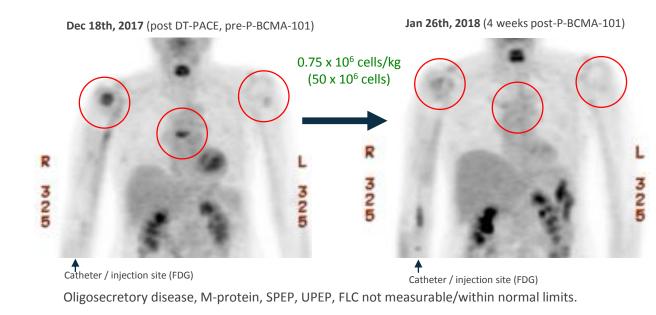


IL - 6

P-BCMA-101 CAR-T Cell Expansion

P-BCMA-101 in Peripheral Blood (PB)


- P-BCMA-101 shows peak expansion between 14-21 days
- CAR-T products generally show peak expansion between 5-14 days
- Peak expansion of CAR-Ts often associated with CRS
- P-BCMA-101 reaches peak expansion gradually without CRS



Tumor Response: High From The Lowest Dose Level Up

Tumor Response in Evaluable Patients by Dose

Patient 105-002 PET

Data cutoff: August 10th, 2018. mDOR, median duration of response; ORR, objective response rate, attaining sCR, CR, VGPR, or PR, including confirmed and unconfirmed responses. Evaluable patients: reached first response assessment by IMWG m-protein criteria or PD/death.

CONFIDENTIAL

Acknowledgements

P-BCMA-101 Patients

Poseida Therapeutics, Inc.

Matthew, M.D., CMO Devon J Shedlock, Ph.D., VP Michelle Resler Christopher Martin, Ph.D. Marty Giedlin, Ph.D. Jennifer Collins Siddiq Abdul-Alim, Ph.D. Rebecca Codde Yenning Tan, M.S. Burton Barnett, Ph.D. Jenessa Smith, Ph.D. Stacey Cranert, Ph.D. Srinivas Rengarajan, M.S. Xinxin Wang, Ph.D. David Hermanson, Ph.D.

<u>CIRM</u> (California Institute for Regenerative Medicine)

MDACC

Bob Orlowski, M.D., Ph.D. Satva Neelapu, M.D.

P-BCMA-101-001 Investigators

Adam Cohen, M.D. UP Abbas Ali, M.D. JHU Jesus Berdeja, M.D. SCRI Caitlin Costello, M.D.UCSD Tara Gregory, M.D. SCRI/CBCI Krina Patel, M.D. MDACC

Summary

- P-BCMA-101 at all doses induces deep and durable responses in a heavily pretreated population with R/R MM
- **To date**, the safety profile of P-BCMA-101 has been extremely good
 - Only one case of CRS observed
 - No tocilizumab or corticosteroid use
 - No neurotoxicity
- **Best-in-class** gene engineering and CAR-T platforms
- **Advantages** in efficacy, safety, speed to clinic and cost
 - Purity may give a **better therapeutic index**
 - Tscm phenotype may give a delayed and less toxic response

